<u>Mapping of Course Outcomes(COs) with Program Outcomes (POs)</u>

Pro	gram Core (PC)	
No.	Course with	Outcomes
	code	
01	MF 700 – Metal Removal Processes	 Develop utilization of understanding of fundamentals of the traditional cutting tools compare it with other tools (a) Identify and utilize fundamentals of metal cutting as applied to the machining. (c) Be able to identify a problem and apply the fundamental concepts and enable to solve problems arising in metal removal process. (b) Demonstrate the ability to define and formulate the properties of cutting tool materials and characteristics (a) Develop the skills of effective utilization of the cutting fluids and applications for better productivity (l) Become competent to design and analyze problems of engineering particularly having relevance to manufacturing (d) The students will demonstrate the comparison between non-traditional machining processes with the traditional parameters- Energy sources; Economics of the processes; Shape and size of material etc. (f, g) Demonstrate ability to arrive at cutting parameters for machining. (b) Develop methods of working for minimizing the
02	MF 701 – Computer Integrated Manufacturing	 production cost. (l) 1. To explain the nature and role of the elements of CIM system. (a, e, f) 2. To discuss the stages in the product development cycle through CIM and the importance of each stage. (c, e, l) 3. To construct and organize database in CIM applications. (b, e) 4. To analyze and design material handling and storage systems. (b) 5. To program and operate a PLC system. (b, d) 6. To present the principles of Numerical Control (NC). (j, c)
03	MF 702 – Product design and rapid prototyping	 To describe an engineering design and development process. (a, b, c, d) Describe, compare and to apply various support methods in the product development (b, d) To employ engineering, scientific, and mathematical principles to execute a design from concept to finished. (a, d, g, h, l) To work collaboratively on a team to successfully

		complete a design project. (g, i, l)
		5. To effectively communicate the results of projects in a
		written and oral format. ((b, i, j)
		6. Reflect on the ethical aspects of product development. (h)
		7. To have the knowledge of rapid prototyping and its
		various techniques involved. (a, c)
		1. To describe and analyze rigid motion. (d)
		2. To formulate manipulator kinematics and operate with
		the resulting equations. (b)
04	MF 703 –	3. To solve simple inverse kinematics problems (a, d)
	Robotics	4. To select sensors for performing robotic tasks. (b, d)
		5. To solve motion planning problems. (a, d)
		6. To operate/ program / repair industrial robots. (a, b, d, i,
		e)
		7. To describe current status of robotics technology and
		new development. (f)
		1. To apply the knowledge of computer graphics , database
		structure in configuring CAD related software applications.
	MF 704 –	(a, d)
05	Manufacturing	2. To implement methods of utilization of appropriate
	Systems	features in CAD application thereby enhancing product. (b, g,
	Lab I	e)
		3. To create CAD models related to mechanical assembly
		thereby reducing the lead time. (b, e, f, k, l)
		4. To selectively choose the appropriate CAD modeling
		techniques for various industrial applications. (b, c, e)
		5. To understand the critical links and advantages of using
		parametric modeling in creation of a product structure. (a, b,
		d)
		6. To demonstrate effective communication of advanced
		design specifications through application of geometric
		modeling. (j)
		1. To understand and respond to the need for rigorous and
		formal metrology concepts in designing (a, b)
	MF 705 –	2. To recognize the limits on data imposed by measurement
06	Metrology and	and analyze uncertainty in an appropriate manner. (b, d)
	Instrumentation	3. To use basic statistical methods to aid data evaluation
		and decision making. (b, i)
		4. To appreciate how to identify and specify sensors (or
		complete instruments) for controlling machines and
		production. (b, d)
		5. To understand the operating principles of a range of
		widely used instrumentation techniques and appreciate
		systems. (a, b, d)
		1. To classify the mechanism of Mechanical machining

	MF 706 –	processes, economic considerations in Ultrasonic machining.
07	Modern	(a, c, f)
	Machining	2. To interpret Electro Chemical machining process.
	Processes	economic aspects of ECM and problems on estimation (h d)
	1100005005	3 To relate Generation and control of electron beam for
		machining laser beam machining and comparison (a. c. d)
		A To differentiate Thermal Metal Demoual Drocesses
		4. To unter endade merinar Metar Keniovari Focesses,
		characteristics of spark eroued surface, machine toor
		Selection. (D, C, C)
		1. To understand, interpret and execute CNC part
0.0	MF /0/ -	programming. (a, b, d)
08	Manufacturing	2. To get acquainted with knowledge of tool path
	Systems	generation. (a, b, d)
	Lab II	3. To learn application of advanced skills in CAM. (e)
		4. To gain insight into structural analysis using FEA
		software. (b, d, e)
Elec	<u>ctiveCourses</u>	
		1 To construct connects finite along ontone dale of marines
		1. To construct accurate limite element models of various
		components loading scenarios, and processes. (a, b, d, e)
		2. To develop appropriate engineering assumptions and
0.1	ME 800 – Finite	their finite element implementation to allow component
01	Element	analysis. (a, d)
	Method	3. To refine and adapt the finite element mesh, boundary
		conditions, and all relevant loads for a given thermal
		boundary conditions. (d, e, i)
		4. To demonstrate an ability to extend finite element
		modeling to include non-traditional problems encounter
		dependent and non-linear problems. (a, d, e)
		5. To demonstrate the ability to use existing analytical and
		approximate methods to verify their finite element model.
		(b, c, d, e)
		6. To clearly and effectively communicate their modeling
		efforts and results in written form. (j)
		7. To critically analyze their assumptions, methods, and
		results. (b)
	ME 803 –	1. To identify the unique characteristics of metals that lead
	Theory of Metal	to plastic deformation as a processing strategy. (a, c, g)
	forming	2. To explain the processes involved in metal forming
02	Processes	mechanics, materials, and tribology. (a, c, d)
		3. To analyze the interrelationships between various factors
		that influence the quality of manufactured product. (f. g. h)
		4. To describe sheet metal characteristics and forming (a)
		5. To describe the wide variety of processes used to shape

		and deform metals, including forging, rolling and e powder metallurgy processes and assorted other
		processes. (a, c, f)
03	ME 802 – Technology of Composite Materials	 To understand the fundamental differences between alloys and composites from 'strengthening concept'. (a, b) To identify the properties of fiber and matrix materials used in commercial composites. (b, d) To predict the elastic properties of both long and short fiber composites based on the constituent properties. (b, d) To rotate stress, strain and stiffness tensors using ideas from matrix algebra. (d, f) To assimilate knowledge of issues in fracture of composites and environmental degradation of composites. (f, g, h) To have exposure to recent developments in composites, including metal and ceramic matrix composites (f, k)
		1. To design and analyze kinematic motions in a machine
04	ME 807 – Machine Tool Dynamics	 1. To design and analyze kinematic motions in a machine tool. (b, c) 2. To understand integrated overview about dynamic properties and characteristics of various machine tools (b, d) 3. To design and analyze systems used for achieving required speeds and feeds. (b, c, d) 4. To select slide ways, spindles and lead screws for reducing friction and achieving high product accuracy. (b, c, d) 5. To explain the reasons for chatter in machining and analyze vibrations so as to improve the machine tool performance. (d) 7. To understand the spectral and modal properties of machines which are crucial for stable and failure-free
		machining. (a, b)
05	ME 817 – Fracture Mechanics	 To gain an understanding and appreciation of the breadth and depth of the field of fracture mechanics. (a) To recognize the strong relationship of fracture mechanics as design tools. (d, f) To become familiar with some of the basic fracture mechanics, fracture criterions, stress and displacements. (d, f) To learn and apply the basic terminology associated with these fields. (f) To increase your knowledge and broaden the perspective of the fracture mechanics world. (b,d) To emphasize for the selection of materials for the required applications. (b, d)
	ME806 - Surface	1. Learn to select the suitable surface engineering process

06	Treatment and	for the particular material and application. (b, c, d)
	Finishing	2. Gains the knowledge of science and engineering of
		platting Processes, Diffusion Processes, Thermal spray
		coatings. (a, c, d)
		3. Gains knowledge about advanced characterization
		techniques and testing of thin films and coatings. (a, c)
		4. To learn about High-energy Surface Modifications, Hard
		Facing Processes and Plasma Surface Engineering (a, b, c)
		5. Ability to choose heat treatment conditions for
		superalloys, Tool steels, Titanium alloys and cast iron. (a, b,
		c)